Ca2+ sparks act as potent regulators of excitation-contraction coupling in airway smooth muscle.
نویسندگان
چکیده
Ca2+ sparks are short lived and localized Ca2+ transients resulting from the opening of ryanodine receptors in sarcoplasmic reticulum. These events relax certain types of smooth muscle by activating big conductance Ca2+-activated K+ channels to produce spontaneous transient outward currents (STOCs) and the resultant closure of voltage-dependent Ca2+ channels. But in many smooth muscles from a variety of organs, Ca2+ sparks can additionally activate Ca2+-activated Cl(-) channels to generate spontaneous transient inward current (STICs). To date, the physiological roles of Ca2+ sparks in this latter group of smooth muscle remain elusive. Here, we show that in airway smooth muscle, Ca2+ sparks under physiological conditions, activating STOCs and STICs, induce biphasic membrane potential transients (BiMPTs), leading to membrane potential oscillations. Paradoxically, BiMPTs stabilize the membrane potential by clamping it within a negative range and prevent the generation of action potentials. Moreover, blocking either Ca2+ sparks or hyperpolarization components of BiMPTs activates voltage-dependent Ca2+ channels, resulting in an increase in global [Ca2+](i) and cell contraction. Therefore, Ca2+ sparks in smooth muscle presenting both STICs and STOCs act as a stabilizer of membrane potential, and altering the balance can profoundly alter the status of excitability and contractility. These results reveal a novel mechanism underlying the control of excitability and contractility in smooth muscle.
منابع مشابه
On the Loose: Uncaging Ca2+-induced Ca2+ Release in Smooth Muscle
Movement of Ca2+ from intracellular stores into the cytosol is an essential component of excitation–contraction coupling in muscle. In cardiac and smooth muscle, Ca2+ is released from the sarcoplasmic reticulum (SR) in response to Ca2+ infl ux by a process of Ca2+-induced Ca2+ release (CICR). First described by Lederer and coworkers in cardiac myocytes (Cheng et al., 1993), highly localized cyt...
متن کاملOntogeny of local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events.
Ca2+ release through ryanodine receptors (RyRs) in the sarcoplasmic reticulum is a key element of excitation-contraction coupling in muscle. In arterial smooth muscle, Ca2+ release through RyRs activates Ca2+-sensitive K+ (KCa) channels to oppose vasoconstriction. Local Ca2+ transients ("Ca2+ sparks"), apparently caused by opening of clustered RyRs, have been observed in smooth and striated mus...
متن کاملIonic mechanisms and Ca regulation in airway smooth muscle contraction: do the data contradict dogma?
Janssen, Luke J. Ionic mechanisms and Ca2 regulation in airway smooth muscle contraction: do the data contradict dogma? Am J Physiol Lung Cell Mol Physiol 282: L1161–L1178, 2002; 10.1152/ajplung.00452. 2001.—In general, excitation-contraction coupling in muscle is dependent on membrane depolarization and hyperpolarization to regulate the opening of voltage-dependent Ca2 channels and, thereby, i...
متن کاملDistinct Effects of Ca2+ Sparks on Cerebral Artery and Airway Smooth Muscle Cell Tone in Mice and Humans
The effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone, as well as the underlying mechanisms, are not clear. In this investigation, we elucidated the underlying mechanisms of the distinct effects of Ca2+ sparks on cerebral artery smooth muscle cells (CASMCs) and airway smooth muscle cells (ASMCs) tone. In CASMCs, owing to the funct...
متن کاملSeeing is believing! Imaging Ca2+-signalling events in living cells
Ever since it was shown that maintenance of muscle contraction required the presence of extracellular Ca(2+), evidence has accumulated that Ca(2+) plays a crucial role in excitation-contraction coupling. This culminated in the use of the photoprotein aequorin to demonstrate that [Ca(2+)](i) increased after depolarization but before contraction in barnacle muscle. Green fluorescent protein was e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 285 3 شماره
صفحات -
تاریخ انتشار 2010